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Executive Summary

To address the impacts of excess stormwater, the U.S. Environmental Protection Agency (EPA)
evaluated potential scenarios for managing stormwater from new development and redevelopment.
The purpose of this study is to examine one of these impacts: flood loss avoidance. This study
generated an estimate of the monetary value of flood loss avoidance that could be achieved by using
distributed stormwater controls to capture a specified volume of runoff. This stormwater manage-
ment approach retains on-site small storm events in an attempt to simulate predevelopment runoff
conditions. This approach is referred to as Low Impact Development (LID) or Green Infrastructure
(GI) for stormwater management and is an integrated approach that uses site planning and small
engineered stormwater controls spatially distributed throughout a development site to capture
runoff as close as possible to where it is generated. In this document, the term Green Infrastructure
is used. Bioretention filters, landscaped roofs, rainwater cisterns, and infiltration trenches are
examples of stormwater controls commonly found in GI applications. These controls infiltrate and
evapotranspire runoff, or capture and store rain for beneficial uses like landscape irrigation and
other non-potable uses. The approach in this study considered the application of GI only to new
development and redevelopment, not as retrofits to mitigate the impact of existing imperviousness.
The study approach consists of estimating flood depths and the associated flood losses with and
without GI. The benefits are the losses that are avoided by watershed-wide implementation of GI. In
this report, the terms “damages” and “flood losses” are used interchangeably.

The timeframe of analysis is from 2020 to 2040. The extent of GI application assumed for this study
is small initially, because the assumption in this study is that GI would be implemented only on new
development and redevelopment starting in 2020. The extent of GI application, and the associated
benefits, would increase with development over time. Therefore, maximum benefits are realized in
2040, the last year of this study period. At the time of this report, several states have already adopted
on-site retention practices; therefore, benefits of wider adoption nationwide are the focus of this
study (i.e. the study focuses on areas that have not adopted retention policies to date).

Generating an estimate of the flood loss avoidance benefit from the use of small storm retention
practices is problematic because data does not exist on damages from small, frequent storm events.
For example, there is limited information on damages such as stream scouring that exposes buried
utilities, bridges, and other assets to flood hazards. In addition, there are no national datasets of at-
risk assets, flood control works, topography, and bathymetry detailed enough to generate accurate
estimates, much less projections of national losses. Nevertheless, this study uses publicly available
datasets and the Federal Emergency Management Agency’s (FEMA) flood loss estimation model
Hazus on a limited number of watersheds to obtain a conceptual quantification of the effect of

stormwater retention on reducing potential riverine flood losses.
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Executive Summary

While this study relied on many assumptions to generate estimates of flood damages, it is important
to keep in mind that the focus is on the “difference” between two conditions, with and without GI,
given the same set of assumptions for both scenarios. Therefore, the absolute value of flood losses is
less important than the relative differences between the scenarios.

Background and Context of Study: GI-based stormwater management has the primary benefit of
water quality and stream protection; flood loss reduction is only one of many co-benefits. Estimation
of the monetary value of these flood loss reduction co-benefits is important for decision-making
because of the challenges in assigning monetary value to improved water quality and stream health.
Unlike monetizing stream health, estimation of flood loss avoidance can be accomplished using
established data and models that, while based on many simplifying assumptions, generate a dollar
value based on defensible, systematic approaches that can be fine-tuned as appropriate, albeit with
additional study costs.

The costs of Gl implementation are not included in this document. Nevertheless, new development
and redevelopment already require stormwater management expenditures, either on-site or
downstream; therefore, GI could be used to meet those requirements fully or partially for little or no
additional cost compared to overall construction costs. This study does not assume retrofitting of
existing imperviousness. Retrofitting, in addition to implementation on new development and
redevelopment, would be expected to generate more flood loss avoidance benefits but would incur
additional costs.

The flood loss avoidance benefits estimated in this study should not be contrasted directly with GI
implementation cost for a benefit-cost comparison because, as noted previously, flood loss avoidance
is not the only, and certainly not the primary, benefit of GI. Comparisons of benefits to costs should
be made using the full suite of benefits that include improved water quality, reduced stream erosion
and scouring, healthier aquatic and benthic ecosystems, greener and cooler cities, more stable stream
baseflow during droughts, groundwater recharge, reduced potable water use, and other benefits.

Retention Scenarios: In this study, the term “retention” is used to indicate capture of rainfall on site
so that it does not become direct runoff. Presumably, the greater the volume of runoff captured, the
greater the overall benefits. The study examines three scenarios, "high”, “medium,” and “low” shown
in Table ES-1. The scenarios are defined by storm percentiles; for example, the 95t percentile is the
storm depth such that 95% of all storms in an average year have a rainfall depth that is smaller than
or equal to the percentile depth. The current analysis concentrates largely on the medium scenario;
the other two are used to assess the sensitivity of the results to the volume of capture. Chapter 2
presents additional details.
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Executive Summary

Table ES-1. Retention scenarios in the study as
defined by the percentile of the storm retained.

Percentile storm retained
Scenario New development Redevelopment
High g5th 9ot
Medium 9ot 85t
Low 85t goth

Sample watersheds: A sample of 20 Hydrologic Unit Code 8 (HUC8) watersheds was selected to
estimate the effect of GI on flood damages. The watersheds were chosen to represent the range of
climate and value of assets potentially exposed to floods, within areas of the lower 48 states that
currently do not have a retention standard. States that already have such standards would not accrue
additional benefits from wider adoption of GI and thus were not the focus of the study; however, they
were included in a national estimate. This process is described in Chapter 3.

Hydrology: Flooding is caused by extreme rainfall events. The volume of runoff generated depends
on soil types and land cover. In particular, impervious surfaces generate large runoff volumes
because they prevent the rain from soaking into the soil. GI reduces the volume of runoff by
infiltrating it into the soil, releasing it to the atmosphere through evapotranspiration, or capturing it
for beneficial use.

The hydrology of the 20 watersheds was characterized using the PeakFQ flood frequency analysis
model (USGS, 2013) to derive probability distributions from existing streamflow records in
unregulated streams, that is, streams without dams or otherwise affected by significant flow
diversions and inflows. The Region of Influence (Rol) approach (Eng et al., 2005) was used to
estimate peak flows at ungaged locations. A methodology was derived to estimate peak flows in the
future based on growth projections and the associated increases in impervious surfaces. To simulate
the effect of GI on the hydrology, a methodology was formulated to simulate the volume-reduction
effect of GI on lessening peak flows. These methods are described in Chapter 4.

Flood hazard: The water surface elevations resulting from the peak flows during flood events define
the flooding depths that are the cause of damages to buildings and other infrastructure. The Rapid
Floodplain Delineation (RFD) model was used to create hydraulic models for the watersheds using
publicly available terrain and hydrography datasets. The models were run for the 2-, 5-, 10-, 25-, 50-,
and 100-year events. In this study the term “floodplain” indicates the horizontal extent of inundated
land resulting from each of these flood events. The horizontal extent of flooding and flood depths
were determined through post-processing of the water surface elevations with a Geographic
Information System (GIS). The results were compiled as depth grids, with a depth value for each
storm event for each grid cell.
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Executive Summary

Deployment of GI led to a general reduction in the total floodplain area for all of the 20 HUC8
watersheds modeled. As expected, the reduction was greater for the small, frequent events. For the
2-year event, the floodplain area decreased by as much as 8%, whereas for the 100-year event the
greatest reduction was around 2.5%. Chapter 5 provides details on the determination of flood
hazards.

Loss estimation: The Hazus model (FEMA, 2013) was used to estimate losses caused by the
simulated flood events. Hazus applies the flood depths from the hydraulic model to various types of
infrastructure to estimate damages to the structure and contents. Hazus contains extensive
databases that aggregate the value of assets by Census block. A library of depth-damage curves is
available to estimate the damage caused by a given flood depth inside a building of a given type.
Hazus accumulates all damages and provides a total damage figure for a given watershed. The total
damages with and without GI can be compared to assess the avoided losses. Approximations were
formulated to consider the flood protection effects of dams and levees. Chapter 6 summarizes the
damage estimation process.

Zero-damage thresholds: Flood damages are highly dependent on the location of assets at risk,
horizontally and vertically, in relation to the source of flooding. By default, Hazus assumes that the
value of assets is uniformly distributed in a given Census block. This approximation can overestimate
damages because the uniform distribution of assets artificially places some dollar value in areas close
to the stream that flood often but may not have any assets at risk. The fact that flood depths are the
greatest in these areas compounds the overestimation effect.

The solution to this shortcoming of the default Hazus application is to use detailed structure
information; however, this information does not exist as a nationally available public dataset. This
information is only available at the local government level. Therefore, an approximate approach was
formulated to address the problem. The approach, described in detail in Chapter 6, assumed that a
given frequently occurring flood does not cause any damages because there are no exposed assets
within that floodplain. The rationale was that areas that flood often would not be developed or would
have assets with low value. This concept of a “zero-damage threshold” is plausible as a means to
account for the damage overestimation. This study evaluates three threshold options:

1. No assets exist in the 2-year floodplain (2-year zero-damage threshold)
2. No assets exist in the 5-year floodplain (5-year zero-damage threshold)
3. No assets exist in the 10-year floodplain (10-year zero-damage threshold)

The purpose of each of these thresholds is to remove assets numerically by assigning zero damages
within the corresponding floodplain and those for less severe events. The area within the zero-
damage threshold increases in size as the return period increases; and the benefits decrease
accordingly. The use of the zero-damage thresholds allows estimation of a range of benefits with the
2-year zero-damage threshold yielding the most losses avoided and the 10-year zero-damage
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threshold producing the fewest losses avoided, or a conservative estimate. Avoided loss estimates
are presented in this study for the 5-year and 10-year zero-damage thresholds.

[t is noted that in an ideal world, FEMA flood insurance regulations would result in development in
such a way that losses would not occur until the 100-year event is exceeded. Properties within the
100-year floodplain mustbe covered by flood insurance to obtain a mortgage from a federally-backed
or insured lender. This insurance requirement results in a higher cost for building in the 100-year
floodplain and may discourage some development, but does not eliminate all construction and
therefore does not avoid the risk completely. In addition, many local building codes prescribe how
development within the 100-year floodplain must proceed to reduce the potential flood damages.
Nevertheless, in reality, there are many reasons why it is reasonable to assume that losses occur at
more frequent events as explained in Chapter 6.

Validations: The public-domain datasets used in the analysis have accuracy limitations in their
ability to place assets at risk with respect to the flood hazard. In addition, several assumptions had
to be made in the study to enable a nationwide estimation. To understand the effects of the accuracy
limitations and the assumptions, several localized tests were conducted to compare the data from
the national datasets used with site-specific information provided by partners or specifically derived
for the study. These tests were not intended to define correction factors but to understand the
potential implications of using the national datasets employed in the study. Some of the tests indicate
that the proposed methodology underestimates damages; others suggest the opposite. For example,
use of a hydrologic model such as HEC-HMS predicted more benefits than using the stream gage
analysis. Using LiDAR terrain data produces fewer damages than the publicly available digital
elevation models that are less accurate. Finally, using site-specific asset location and value can
produce either more or fewer damages depending on the watershed - although in the validations in
this study fewer damages were observed using site-specific asset locations. As previously noted, in
this study it is not the absolute value of the losses but the difference between the with- and without-
GI scenarios that is of interest. On balance, the tests indicate that the methodology chosen is useful
to estimate conceptually the flood losses avoided by adopting GI on a nationwide basis, which can
inform policy decisions with an understanding of the limitations described in this report. For
localized studies, the validation tests emphasize the need to use site-specific data, although the
methodology would remain the same. These validations are presented in Chapter 7.

Nationwide scale-up: Regression equations developed to relate the flood losses avoided to
watershed properties served as a tool to extrapolate the results for the 20 HUC8 watersheds in the
sample to other watersheds. The accuracy of the regression was limited by both the small number
of watersheds modeled and by the variable nature of the watershed properties and assets. The goal
was to estimate a range of flood loss avoidance benefits to the nation that could be realized by
adoption of stormwater management practices based on GI. The benefits were analyzed as a
snapshot in 2040 in the following three regions:
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e The 40 top-growth HUC4 watersheds, according to the 2040 forecast provided by EPA

* Conterminous United States, excluding jurisdictions that already have GI-based retention
standards in place

¢ Conterminous United States

The benefits were adjusted to account for the value of added infrastructure between “existing”
conditions (2006) and 2040. These estimates only include buildings, their contents, and the
associated income loss. Consideration of roads, bridges, utilities, and other critical infrastructure
would increase these values. In addition, the benefits were assumed not to propagate from one HUC8
watershed to the next one directly downstream. If they had, the losses avoided would increase.

The annual benefits in 2040 in millions (2011 dollars) are summarized in the following table for the
“medium” scenario (90t percentile capture for new development and 85t percentile for
redevelopment):

Table ES-2. Flood losses avoided in the year 2040 for various
zero-damage thresholds, expressed in 2011 dollars
(benefits in 2040 [in millions, 2011 dollars]).

Zero-damage threshold
5-year 10-year
40 top-growth HUC4s $94 S44
Conterminous United States, excluding $136 $63
jurisdictions with retention standards
Conterminous United States $329 S114

Additional benefits would continue to accrue after 2040 with continued development and
redevelopment. During the study period, it is assumed that the benefits vary linearly from zero in
2020 to the maximum values in 2040 given in Table ES-2. The present value of these linear series is
one way to express the savings to the nation in flood losses avoided. Using a discount rate of 3%, the
results of this calculation are shown in Table ES-3. This process and results are presented in
Chapter 8.
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Table ES—-3. Present value of flood losses avoided between
2020 and 2040 for various zero-damage thresholds, expressed in 2011 dollars
(present value of benefits between 2020 and 2040
using a 3% discount rate [billions, 2011 dollars]).

Zero-damage threshold
5-year 10-year
40 top-growth HUC4s $0.7 $0.3
Conterminous United States, excluding
jurisdictions with retention standards $1.0 S0.4
Conterminous United States $2.3 S0.8

Conclusions and recommendations for methodology improvements: There are many sources of
uncertainty in a study of this nature. Many improvements could be undertaken if the need for more
accuracy warranted the additional study cost. For example, more accurate terrain and bathymetry
data could be obtained, detailed hydrologic modeling could be performed, actual asset locations and
characteristics could be used, and climate change could be considered. Conclusions and
recommendations for methodology improvements are presented in Chapter 9.

Findings: GI can reduce flood losses when applied watershed-wide as a co-benefit to the primary
objective of water quality protection. The methodology proposed in this study makes use of national
public datasets that have accuracy limitations. In particular, the assumption of uniformly distributed
assets across Census blocks in Hazus can diverge considerably from reality. The definition of the
varying zero-damage threshold allows for a qualitative understanding of that divergence. Despite
these limitations, the methodology is useful for this type of comparative national study. It is
important to keep in mind that this study e